Гемоглобин – сложный железосодержащий белок, относится к классу гемопротеинов. Выполняет две важные функции:

· перенос кислорода из легких к периферическим тканям;

· участие в переносе СО2 и протонов из периферических тканей в легкие.

Производные гемоглобина

Молекула гемоглобина взаимодействует с различными лигандами, образуя производные гемоглобина.

1. Дезоксигемоглобин – ННb – не связанный с кислородом и содержащий гем с двухвалетным железом Fe 2+ .

2. Оксигемоглобин– ННbO2 – полностью оксигенированный гемоглобин, связанный с четырьмя молекулами кислорода.

3. Карбгемоглобин – ННbCO2 – гемоглобин, связанный с СО2. Выполняет функцию выведения СО2 из тканей к легким. Соединение нестойкое, легко диссоциирует в легочных капиллярах. Этим путем выводится до 10-15% СО2.

4. Карбоксигемоглобин– ННbСО – образуется при отравлении оксидом углерода (II). Сродство гемоглобина к СО примерно в 300 раз выше, чем к кислороду, при этом гемоглобин теряет способность связывать кислород и наступает смерть от удушья.

5. Метгемоглобин– MetHb – образуется при действии окислителей (нитрит натрия, нитробензол). Содержит железо в трехвалентной форме Fe 3+ и теряет способность к переносу кислорода. В норме образуется небольшое количество метгемоглобина – примерно 0,5 % в сутки.

Варианты гемоглобина в онтогенезе

Количество и состав фракций гемоглобина изменяется в процессе онтогенеза. Все гемоглобины представляют собой тетрамеры, построенные из разного набора субъединиц (α, β, γ, δ) и преимущественно образуются на разных этапах развития организма человека – от эмбрионального до взрослого состояния. Различают следующие физиологические типы гемоглобинов: примитивный гемоглобин НbР, фетальный гемоглобин HbF (fetus – плод), гемоглобин взрослых HbA, HbA2, HbA3 (adultus – взрослый).

Примитивный гемоглобин– синтезируется в эмбриональном желточном мешке через несколько недель после оплодотворения. Состоит из двух α- и двух ε-цепей (2α, 2ε). Через две недели после формирования печени плода в ней начинает синтезироваться HbF, который к шести месяцам полностью замещает НbР.

Фетальный гемоглобин – синтезируется в печени и костном мозге плода до периода его рождения. Состоит из двух α- и двух γ-цепей (2α, 2γ). Характеризуется более высоким сродством к кислороду и обеспечивает эффективную доставку кислорода к эмбриону из системы кровообращения матери. HbF является главным типом гемоглобина плода. Кровь новорожденного содержит до 80% HbF, но к концу 1-го года жизни он почти целиком заменяется на HbA. В крови взрослого человека присутствует в минимальном количестве – до 1,5% от общего количества гемоглобина.

Гемоглобин А – основной гемоглобин взрослого человека (96 % от общего количества). Начинает синтезироваться в клетках костного мозга уже на 8-м месяце развития плода. HbA состоит из двух α- и двух β-цепей.

Минорные гемоглобины:

1) HbA2 — 2α 2δ, в крови взрослого человека примерно 2,6 % HbA2. Обладает большим сродством к кислороду.

2) HbA3 — 2α 2β, однако имеются изменения в строении β-цепей по сравнению с HbA. Появляется в крови в небольших количествах при старении.

Гемоглобинопатии

Все структурные аномалии белковой части гемоглобина называют гемоглобинозами. Различают:

Гемоглобинопатии – наследственные изменения структуры какой-либо цепи нормального гемоглобина вследствие точечных мутаций генов. Известно около 300 вариантов HbA, имеющих в первичной структуре α- или β-цепи незначительные изменения. Некоторые из них практически не влияют на функции белка и здоровье человека, другие – вызывают значительные нарушения функции HbA и развитие заболеваний различной степени тяжести.

В аномальных гемоглобинах изменения могут затрагивать аминокислоты:

· находящиеся на поверхности белка;

· участвующие в формировании активного центра;

· аминокислоты, замена которых нарушает трехмерную конформацию молекулы;

· аминокислоты, замена которых изменяет четвертичную структуру белка и его регуляторные свойства.

Аномальные гемоглобины отличаются от HbA по первичной структуре, форме, величине заряда. При этом изменяются такие свойства как сродство к кислороду, растворимость, устойчивость к денатурации и др.

1. Серповидноклеточная анемия. Наследственное заболевание, связанное с заменой глутаминовой кислоты в 6-м положении (с N-конца) на валин в β-цепях молекулы гемоглобина S. Растворимость дезоксигемоглобина S значительно снижена. Его молекулы начинают «слипаться», образуя волокнистый осадок, который деформирует эритроцит, придавая ему форму серпа (полумесяца). Такие эритроциты плохо проходят через капилляры тканей, закупоривают сосуды и создают локальную гипоксию. Они быстро разрушаются и возникает гемолитическая анемия. Дети, гомозиготные по мутантному гену, часто умирают в раннем возрасте. Болезнь распространена в странах Южной Америки, Африки и Юго-Восточной Азии.

2. Гемоглобин М – в результате мутации в гене происходит замена в α- или β-цепи гистидина (в 7-м или 8-м положении) на тирозин. В результате этого Fe 2+ окисляется в Fe 3+ и образуется метгемоглобин, не способный связывать кислород. Развивается цианоз и гипоксия тканей.

Талассемии – наследственные заболевания, связанные с нарушением синтеза α- или β-цепей.

β-талассемии развиваются в результате снижения синтеза β-цепей. Проявляется после рождения, при этом в крови наряду с НbА появляется до 15 % НbА2 и 15-60 % HbF. Болезнь характеризуется гиперплазией и разрушением костного мозга, поражением печени, селезенки и сопровождается гемолитической анемией.

Читайте также:  Синдром вольфа паркинсона уайта клинические рекомендации

α-талассемии возникают при нарушении синтеза α-цепей. При полном отсутствии α-цепей наступает внутриутробная гибель плода, так как не образуется HbF, а тетрамеры γ4 обладают высоким сродством к кислороду и не способны выполнять транспортную функцию, что ведет к развитию тканевой гипоксии и к смерти вскоре после рождения.

Обмен железа

В организме взрослого человека содержится 3-4 г железа, из этого количества около 3,5 г находится в плазме крови. Гемоглобин эритроцитов содержит примерно 68 % всего железа организма, ферритин – 27 % (резервное железо печени, селезенки, костного мозга), миоглобин (в мышцах) – 4 %, трансферрин (в плазме крови) – 0,1. На долю всех содержащих железо ферментов приходится примерно 1 % железа, имеющегося в организме.

Рис. 30.1. Обмен железа в организме человека.

В обмене железа принимает участие ряд белков.

Апоферритин. Белок связывает железо в эритроцитах и превращается в ферритин, который остается в энтероцитах. Таким способом регулируется поступление железа в капилляры крови из клеток кишечника. Когда потребность организма в железе невелика, скорость синтеза апоферритина повышается. При недостатке железа в организме апоферритин в энтероцитах почти не синтезируется.

Трансферрин. Это транспортный белок, относится к гликопротеинам, синтезируется в печени. Он имеет два центра связывания железа. Трансферрин транспортирует железо с током крови к местам депонирования и использования. В норме трансферрин насыщен железом приблизительно на 33 %.

Ферритин. Олигомерный белок с молекулярной массой 450 к Да. Он состоит из 24 идентичных протомеров, образующих полую сферу. Железо депонируется в ферритине в виде гидроксифосфата. Содержание железа в молекуле ферритина непостоянно. Функция ферритина – депонирование железа. Ферритин содержится почти во всех тканях, но в наибольшем количестве в печени, селезенке, костном мозге.

Дата добавления: 2015-12-22 ; просмотров: 737 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Гемоглоб и н (Hb) (от гемо. и лат. globus — шар), красный железосодержащий пигмент крови человека, позвоночных и некоторых беспозвоночных животных; в организме выполняет функцию переноса кислорода (O2) из органов дыхания к тканям; играет также важную роль в переносе углекислого газа от тканей в органы дыхания. У большинства беспозвоночных Г. свободно растворён в крови; у позвоночных и некоторых беспозвоночных находится в красных кровяных клетках — эритроцитах, составляя до 94% их сухого остатка. Молярная масса Г., включенного в эритроциты, около 66 000, растворённого в плазме — до 3000000. По химической природе Г. — сложный белок — хромопротеид, состоящий из белка глобина и железопорфирина — гема. У высших животных и человека Г. состоит из 4 субъединиц-мономеров с молярной массой около 17000; два мономера содержат по 141 остатку аминокислот ( a -цепи), два других — по 146 остатков ( b -цепи).

Пространственные структуры этих полипептидов во многом аналогичны. Они образуют характерные «гидрофобные карманы», в которых размещены молекулы гема (по одной на каждую субъединицу). Из 6 координационных связей атома железа, входящего в состав гема, 4 направлены на азот пиррольных колец; 5-я соединена с азотом имидазольного кольца гистидина, принадлежащего полипептидам и стоящего на 87-м месте в a -цепи и на 92-м месте в b -цепи; 6-я связь направлена на молекулу воды или др. группы (лиганды) и в том числе на кислород. Субъединицы рыхло связаны между собой водородными, солевыми и др. нековалентными связями и легко диссоциируют под влиянием амидов, повышенной концентрации солей с образованием главным образом симметричных димеров ( a b ) и частично a — и b -мономеров. Пространственная структура молекулы Г. изучена методом рентгеноструктурного анализа (М. Перуц, 1959).

Последовательность расположения аминокислот в a — и b -цепях Г. ряда высших животных и человека полностью выяснена. В собранной в тетрамер молекуле Г. все 4 остатка гема расположены на поверхности и легко доступны реакции с O2. Присоединение O2 обеспечивается содержанием в геме атома Fe 2+ . Эта реакция обратима и зависит от парциального давления (напряжения) O2. В капиллярах лёгких, где напряжение O2 около 100 мм рт. ст., Г. соединяется с O2 (процесс оксигенации), превращаясь в оксигенированный Г. — оксигемоглобин. В капиллярах тканей, где напряжение O2 значительно ниже (ок. 40 мм рт. ст.), происходит диссоциация оксигемоглобина на Г. и O2; последний поступает в клетки органов и тканей, где парциальное давление O2 ещё ниже (5—20 мм рт. cm.); в глубине клеток оно падает практически до нуля. Присоединение O2 к Г. и диссоциация оксигемоглобина на Г. и O2 сопровождаются конформационными (пространственными) изменениями молекулы Г., а также его обратимым распадом на димеры и мономеры с последующей агрегацией в тетрамеры.

Изменяются при реакции с O2 и др. свойства Г.: оксигенированный Г. — в 70 раз более сильная кислота, чем Г. Это играет большую роль в связывании в тканях и отдаче в лёгких CO2. Характерны полосы поглощения в видимой части спектра: у Г. — один максимум (при 554 ммк), у оксигенированного Г. — два максимума при 578 и 540 ммк. Г. способен непосредственно присоединять CO2 (в результате реакции CO2 с NH2-rpyппами глобина); при этом образуется карбгемоглобин — соединение неустойчивое, легко распадающееся в капиллярах лёгких на Г. и CO2.

Читайте также:  Сколько стоит ангиография сосудов головного мозга

Количество Г. в крови человека — в среднем 13—16 г% (или 78%—96% по Сали); у женщин Г. несколько меньше, чем у мужчин. Свойства Г. меняются в онтогенезе. Поэтому различают Г. эмбриональный, Г. — плода (foetus) — HbF, Г. взрослых (adult) — HbA. Сродство к кислороду у Г. плода выше, чем у Г. взрослых, что имеет существенное физиологическое значение и обеспечивает большую устойчивость организма плода к недостатку O2. Определение количества Г. в крови имеет важное значение для характеристики дыхательной функции крови в нормальных условиях и при самых различных заболеваниях, особенно при болезнях крови. Количество Г. определяют специальными приборами — гемометрами.

При некоторых заболеваниях, а также при врождённых аномалиях крови (см. Гемоглобинопатии) в эритроцитах появляются аномальные (патологические) Г., отличающиеся от нормальных замещением аминокислотного остатка в ( или b -цепях. Выделено более 50 разновидностей аномальных Г. Так, при серповидноклеточной анемии обнаружен Г., в b -цепях которого глутаминовая кислота, стоящая на 6-м месте от N-koнца, замещена валином. Аномалии эритроцитов, связанные с содержанием гемоглобина F или Н, лежат в основе талассемии, метгемоглобинемии. Дыхательная функция некоторых аномальных Г. резко нарушена, что обусловливает различные патологические состояния (анемии и др.). Свойства Г. могут меняться при отравлении организма, например угарным газом, вызывающим образование карбоксигемоглобина, или ядами, переводящими Fe 2+ гема в Fe 3+ с образованием метгемоглобина. Эти производные Г. не способны переносить кислород. Г. различных животных обладают видовой специфичностью, обусловленной своеобразием строения белковой части молекулы. Г., освобождающийся при разрушении эритроцитов, — источник образования жёлчных пигментов.

В мышечной ткани содержится мышечный Г. — миоглобин, по молярной массе, составу и свойствам близкий к субъединицам Г. (мономерам). Аналоги Г. обнаружены у некоторых растений (например, леггемоглобин содержится в клубеньках бобовых).

Лит.: Коржуев П. А., Гемоглобин, М., 1964; Гауровиц Ф., Химия и функции белков, пер. с англ., 2 изд., М., 1965, с. 303—23; Ингрэм В., Биосинтез макромолекул, пер. с англ., М., 1966, с. 188—97; Рапопорт С. М., Медицинская биохимия, пер. с нем., М., 1966; Перутц М., Молекула гемоглобина, в сборнике: Молекулы и клетки, М., 1966; Цукеркандль Э.; Эволюция гемоглобина, там же; Fanelli A. R., AntoniniE., Caputo A., Hemoglobin and myoglobin, «Advances in Protein Chemistry», 1964, v. 19, p. 73—222; Antonini Е., Brunori M., Hemoglobin, «Annual Review of Biochemistry», 1970, v. 39, p. 977—1042.

Г. В. Андреенко, С. Е. Северин.

Спектры поглощения гемоглобина и его соединений: 1 — гемоглобин; 2 — оксигемоглобин; 3 — карбоксигемоглобин; 4 — метгемоглобин: B, C, D, E, F, G — основные фраунгоферовы линии солнечного спектра, цифрами обозначены длины волн.

Кривая диссоциации оксигемоглобина человека.

Кровь — важнейший компонент любого организма. От ее состава зависит благополучие и здоровье любого живого существа, будь то человек или животное. Среди всех составляющих, входящих в состав крови, одну из наиболее серьезных функций выполняет гемоглобин.

Процентное содержание этого вещества является показателем благополучия или наличия патологии в организме, поэтому при анализе крови ему уделяется особое внимание.

Гемоглобин и его роль в организме человека и животного

Гемоглобин — это особый белок, в состав которого входит железо. Именно этот элемент обеспечивает окрашивание нашей крови в оттенки красного цвета. Он отвечает за транспортировку кислорода к органам и тканям организма, выполняет буферные функции. Гемоглобин наличествует в крови всех живых существ, обладающих системой кровообращения.

Легкие людей и животных наполняются кислородом, который через систему капилляров насыщает кровь. Гемоглобин, содержащийся в красных кровяных тельцах — эритроцитах — в связанном виде переносит кислород от легких во все части тела. В них кислород высвобождается, поддерживая процессы окисления, необходимые для нормальной жизнедеятельности клеток и функционирования органов.

Гемоглобин обладает свойством частично связывать углекислый газ и выводить его из организма, так что роль этого вещества чрезвычайно важна для здоровья любого живого существа.

Нормы гемоглобина у людей, кошек и собак

Количество гемоглобина у представителей разных полов отличается:

  • мужчины — 130–160 г/л (минимум 120, максимум 180 г/л);
  • женщины — 120— 50 г/л;
  • дети: новорожденные — 145–225 г/л, от 3 месяцев до полугода — 95–135 г/л, с года до 18 лет — постепенное повышение показателей до «взрослого» уровня.

Во время беременности концентрация гемоглобина падает из-за повышенной нагрузки на организм женщины, поэтому для беременной важно следить за показателями крови.

Читайте также:  Какие продукты повышают холестерин в крови таблица

У собак норма гемоглобина равна такой же норме у взрослого мужчины — 120–180 г/л, у щенят — 74–180 г/л.

У кошек показатели в норме ниже — 80–150 г/л.

Повышенный уровень гемоглобина

Рост показателей гемоглобина в большинстве случаев говорит о наличии патологических процессов в организме. В основном они связаны со сгущением крови и повышением концентрации эритроцитов.

Это состояние носит название «гиперхромия». Оно может проявляться как следствие следующих заболеваний или состояний:

  1. Гипоксия, или кислородное голодание. Случается как у взрослых животных или людей, так и у детенышей или плода во время внутриутробного развития.
  2. Физические перегрузки. Собаки часто проявляют чрезмерную активность, а кошек могут гонять дворовые псы или дети, что приводит не только к физическому переутомлению, но и к нарушению общего здоровья животного.
  3. Стрессовые состояния. У собак и кошек это может быть перемена места жительства, новые владельцы, поездка в ветеринарную клинику и даже появление в семье ребенка или другого домашнего питомца.
  4. Обезвоживание или дегидратация. Это состояние может быть вызвано как заболеванием, так и обычными причинами: слишком жаркой погодой, нахождением в теплом помещении, повышенной активностью, высокой сухостью воздуха, нехваткой питьевой воды, особенно при питании сухими кормовыми смесями.
  5. Заболевания крови, например, эритроцитоз или гемолиз эритроцитов в сосудах.

Незначительное увеличение уровня гемоглобина не означает наличия серьезной проблемы, а может быть вызвано физиологическими причинами.

Для этого потребуется провести повторный анализ крови. Если он покажет норму, волноваться не о чем.

Сниженный уровень гемоглобина

Низкий уровень гемоглобина встречается чаще, но вызывает большую озабоченность. Это связано с тем, что пониженные показатели указывают на наличие серьезных нарушений в функционировании организма человека или животного:

  1. Анемии. Значительное снижение показателей гемоглобина говорит о том, что ткани и органы страдают от острой нехватки кислорода. Это может привести к развитию множества опасных заболеваний.
  2. Большая кровопотеря. В основном она встречается при сильных травмах, например, при падении кошки из окна или попадании собаки под колеса автомобиля.
  3. Внутреннее кровотечение. Оно может быть следствием травмы и различных патологических процессов в органах, например, прободением язвы или протыканием стенки кишечника проглоченными костями с острыми краями.
  4. Поражения костного мозга. Эти заболевания приводят к изменению формулы крови.
  5. Заболевания почек. При них нарушается отток мочи, и кровь «отравляется» продуктами распада, что сказывается на ее составе и количестве гемоглобина.
  6. Поражения печени.
  7. Нарушения работы пищеварительного тракта.
  8. Диабет.
  9. Гормональные проблемы.
  10. Гельминтоз.
  11. Наличие вшей, клещей и блох в большом количестве.
  12. Длительный прием антибиотиков.
  13. Неправильное, несбалансированное питание с острой нехваткой железа.
  14. Недоедание.
  15. Злокачественные новообразования. Опухоли различных органов сильно ослабляют организм и сказываются на всех его функциях, а раковая интоксикация приводит к изменениям в составе крови.
  16. Метастазы. Распространение злокачественных новообразований вызывает серьезные нарушения в работе всего организма и обязательно сказывается на крови.

При наличии анемии, которую раньше называли малокровием, человек или животное отличается слабостью, вялостью, инертностью, бледными кожными покровами и слизистыми оболочками.

Также появляется извращение вкуса — человек или животное может начать есть землю, мел, штукатурку и другие вещества, не пригодные в пищу. При наличии таких проявлений необходимо срочное обращение к врачу.

Способы нормализации показателей

Повышение уровня гемоглобина ни в коем случае нельзя пытаться лечить в домашних условиях, безразлично, идет ли речь о человеке или о кошке с собакой. Для этого необходимо полноценное обследование и определение причины состояния. Если речь идет о легком обезвоживании, для нормализации показателей достаточно просто увеличить объем чистой питьевой воды.

Но при длительном нахождении без воды животному или человеку нельзя позволять сразу обильно пить — это приведет к мучительной и быстрой гибели. Пить дают часто, но понемногу, чтобы исстрадавшийся организм привык к обилию жидкости и справился с ней.

Если у кошки или собаки выявлен низкий гемоглобин, лечение также связано с причиной такого состояния. Если оно не связано с болезнью, рекомендуется использовать следующие способы:

  1. Увеличить процентное содержание красного мяса и печени — они богаты железом и витаминами группы В. Также можно по совету врача давать домашнему любимцу гематоген.
  2. По врачебной рекомендации изменить питание и добавлять к нему витамины с повышенной концентрацией железа или же железосодержащие добавки.
  3. Чаще гулять на улице, но не доводить собаку до усталости. Если речь идет о кошке, то позволять ей находиться на закрытом (безопасном) балконе или вывозить летом на дачу.
  4. Делать с животным элементарную зарядку в виде игры.
  5. Выполнять легкий массаж для стимуляции кровообращения.

Очень важно правильно составлять рацион кошки или собаки. Лучше всего проконсультироваться с опытным ветеринаром, который учтет возраст пса или кота, а также наличие различных заболеваний, травм и патологий.

Добавить комментарий

Ваш адрес email не будет опубликован.

Adblock
detector